A concise proof of Kruskal’s theorem on tensor decomposition
نویسندگان
چکیده
منابع مشابه
A concise proof of Kruskal’s theorem on tensor decomposition
A theorem of J. Kruskal from 1977, motivated by a latent-class statistical model, established that under certain explicit conditions the expression of a third-order tensor as the sum of rank-1 tensors is essentially unique. We give a new proof of this fundamental result, which is substantially shorter than both the original one and recent versions along the original lines.
متن کاملA simple proof of Kashin’s decomposition theorem∗†
Compressive Sensing techniques are used in a short proof of Kashin’s decomposition theorem generalized to `p-spaces for p ≤ 1. The proof is based on the observation that the null-space of a properly-sized matrix with restricted isometry property is almost Euclidean when endowed with the `p-quasinorm. Kashin’s decomposition theorem states that, for any integer m ≥ 1, `2m 1 is the orthogonal sum ...
متن کاملA Concise, Elementary Proof of Arzelà's Bounded Convergence Theorem
Arzelà's Bounded Convergence Theorem (1885) states that if a sequence of Riemann integrable functions on a compact interval is uniformly bounded and has an integrable pointwise limit function, then the sequence of their integrals tends to the integral of the limit. It is a trivial consequence of measure theory; in particular, of the Dominated Convergence Theorem. However, denying oneself the ma...
متن کاملAnother proof of Banaschewski's surjection theorem
We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.11.033